If this sounds interesting to you and you'd like to request a demo or learn more, please contact sales.

Contact Sales

Arduino Vs Raspberry Pi: Which Is the Best Board for You

Arduino and Raspberry Pi are two of the most popular single-board computers used by electrical engineers for various projects. Both have their own strengths and weaknesses, and choosing between the two depends on the specific requirements of a project.

Arduino Uno is a microcontroller board that was designed to provide a simple and accessible platform for beginners to learn electronics and programming. It has a straightforward programming environment based on a simplified version of the C programming language, and a limited number of input/output (I/O) pins that make it well-suited for simple projects that require basic control over sensors and actuators.

Raspberry Pi Zero, on the other hand, is a small and inexpensive single-board computer that runs a full operating system, such as Raspbian, which is based on Linux. Unlike Arduino Uno, Raspberry Pi has a more powerful processor, more memory, and a greater number of I/O pins, making it ideal for complex projects that require higher processing power and connectivity options.

How do the microcontrollers differ?

One of the key differences between Arduino and Raspberry Pi is the type of microcontroller used. Arduino Uno uses a microcontroller that is designed to be simple and easy to use, with a limited number of I/O pins. Raspberry Pi Zero, on the other hand, uses a more powerful system-on-a-chip (SoC) that provides more processing power and memory, and a greater number of I/O pins.

Operating Systems (OS) & approaches to software

Arduino IDE and Raspberry Pi microcontrollers have different operating systems (OS) and approaches to software.

Arduino has a simplified software environment known as the Arduino Integrated Development Environment (IDE), which is used to write and upload code to the board. The Arduino IDE is based on a simplified version of the C programming language and provides a user-friendly interface for programming and controlling the board's inputs and outputs.

Raspberry Pi, on the other hand, runs a full operating system, such as Linux, which provides a more powerful and versatile environment for software development. Raspberry Pi can run multiple applications and services simultaneously, and its operating system can be extended and customized as needed. This makes it an ideal platform for complex projects that require a lot of processing power and memory.

In summary, Arduino has a simpler software environment that is well-suited for basic control of inputs and outputs, while Raspberry Pi has a more powerful and versatile operating system that provides greater functionality for complex projects.

Connectivity Options

In terms of connectivity options, Arduino has a limited number of I/O pins, including a limited number of digital and analog input/output pins, and a small number of communication ports, such as a USB port. Raspberry Pi Zero, on the other hand, has a greater number of I/O pins, including a greater number of digital and analog input/output pins, and a range of communication ports, such as an Ethernet port and an HDMI port.

Processor and Clock Speed

Arduino uses an AVR microcontroller, with a clock speed of 16 MHz for most boards. In contrast, Raspberry Pi uses an ARM Cortex-A72 processor for the Raspberry Pi 4, and an ARM Cortex-A53 for other models. The clock speed for Raspberry Pi 4 is 1.5 GHz, and for other models it is 1.2 GHz. The faster clock speed and more powerful processor of Raspberry Pi make it more suitable for complex projects that require more processing power.

RAM

Arduino boards have limited memory, with 2-8 KB of RAM, depending on the board. In comparison, Raspberry Pi 4 has 1 GB of RAM, Raspberry Pi 3 has 512 MB of RAM, and Raspberry Pi 2 has 256 MB of RAM. The larger memory of Raspberry Pi makes it more suitable for projects that require more memory, such as image and video processing.

Digital and Analog Input/Output Pins

Arduino boards have 14 digital input/output pins, with 6 of them capable of PWM output. In comparison, Raspberry Pi has 40 general-purpose input/output (GPIO) pins. The GPIO pins on Raspberry Pi can be used for both digital and analog input, making it more versatile than Arduino in this regard. However, the smaller number of digital input/output pins on Arduino makes it easier to use and less complicated for beginners.

Price Comparison

Another factor to consider is the cost of the platforms. Arduino is relatively low-cost, making it accessible for hobbyists and beginners. Raspberry Pi Zero is also relatively low-cost, but its more powerful processor, greater number of I/O pins, and full operating system make it more expensive than Arduino.

How do the Arduino and Raspberry Pi Communities compare? 

The communities for Arduino and Raspberry Pi are both large and active, with a wealth of resources and support available for users.

The Arduino community is well-established, with a large user base and a long history of success. The platform has a strong focus on education and accessibility, and its user-friendly software environment and simple programming language make it a popular choice for beginners and hobbyists. The community provides a wide range of tutorials, project ideas, and support forums, making it easy for users to get started and find help when needed.

The Raspberry Pi community is also large and active, with a diverse user base that includes hobbyists, students, educators, and professionals. The platform's versatility and power make it a popular choice for a wide range of projects, from simple hobby projects to complex commercial applications. The community provides a wealth of resources and support, including tutorials, forums, and documentation, as well as a vibrant ecosystem of third-party add-ons and accessories.

Shields and Accessories

Arduino has a wide range of shields available that can be used to expand its capabilities, such as Ethernet shields, WiFi shields, and motor control shields. Raspberry Pi also has a wide range of accessories and expansion boards available, such as HATs (Hardware Attached on Top), camera modules, and displays. This makes both devices highly customizable and able to adapt to a wide range of projects.

Here is a comparison table with more specific details of Arduino and Raspberry Pi to help make a decision about which one to use. We'll break down each feature in more detail afterwards. 

| Feature| Arduino | Raspberry Pi | | :--- | :--- | :--- | | Purpose | Microcontroller board for simple projects requiring basic control over peripherals | Fully functional computer for advanced projects requiring more processing power and memory | | Processor | AVR microcontroller | ARM Cortex-A72 (for Raspberry Pi 4) or ARM Cortex-A53 (for other models) | | Clock Speed | 16 MHz for most boards | 1.5 GHz for Raspberry Pi 4, 1.2 GHz for other models | | RAM | 2-8 KB (depending on the board) | 1 GB for Raspberry Pi 4, 512 MB for Raspberry Pi 3, 256 MB for Raspberry Pi 2 | | Operating System | Lightweight and designed specifically for microcontroller boards, such as Arduino's own Integrated Development Environment (IDE) | Full operating system such as Linux, with a variety of distributions available | | Digital Input/Output Pins | 14 digital input/output pins (6 of which can be used as PWM outputs) | 40 general-purpose input/output (GPIO) pins | | Analog Input Pins | 6-8 analog inputs (depending on the board) | 8 analog inputs (GPIO pins with ADC functionality) | | Community | Large and active community with a wide range of resources, such as forums, tutorials, and libraries | Large and active community with a wide range of resources, such as forums, tutorials, and libraries | | Shields and Accessories | Wide range of shields available to expand capabilities, such as Ethernet shields, WiFi shields, and motor control shields | Wide range of accessories and expansion boards available, such as HATs (Hardware Attached on Top), camera modules, and displays |

Which is best for robotics Raspberry Pi or Arduino?

Arduino is best for simple robotics projects that require basic control over sensors and actuators, as it has a straightforward programming environment and a limited number of input/output pins. It is also relatively low-cost, making it accessible for hobbyists and beginners.

On the other hand, Raspberry Pi is better for more complex robotics projects that require higher processing power, memory, and connectivity options. It runs a full operating system, such as Linux, which provides more functionality and versatility than the lightweight environment offered by Arduino. Raspberry Pi also has a greater number of input/output pins and is compatible with a wider range of accessories and expansion boards.

Should a beginner start with Arduino or Raspberry Pi?

For a beginner in electronics and robotics, it is recommended to start with Arduino. The main reason for this is its simplicity and ease of use. Arduino has a more straightforward programming environment and a simpler hardware setup compared to Raspberry Pi, which makes it an ideal choice for beginners who are just starting to learn about electronics and robotics.

Arduino is also designed to be user-friendly, with a range of tutorials, projects, and resources available to help you get started quickly. Additionally, it is relatively low-cost, which makes it accessible for hobbyists and beginners.

On the other hand, Raspberry Pi is a more complex platform that requires a greater level of technical knowledge to set up and use effectively. While it provides more advanced features and capabilities compared to Arduino, it may be overwhelming for a beginner who is just starting out.

Both Arduino and Raspberry Pi have their own unique features and capabilities, making them suitable for different types of projects. Arduino Uno is a simple and accessible platform that is well-suited for basic control of inputs and outputs, while Raspberry Pi Zero is a more powerful and versatile platform that is ideal for complex projects that require higher processing power and connectivity options. When deciding between the two platforms, it is important to consider your specific needs and requirements, as well as your budget and level of technical knowledge.

Profile avatar of the blog author

Lance Cassidy

Lance is Co-Founder & CDO of Flux, a hardware design platform that’s revolutionizing how teams create and iterate on circuits. Find him on Flux @lwcassid

Go 10x faster from idea to PCB
Flux is an all-in-one EDA. Use re-usable blocks, scripting, and a library you don’t have to manage to dramatically reduce the time it takes to go from idea to prototype.
Illustration of sub-layout. Several groups of parts and traces hover above a layout.
Illustration of sub-layout. Several groups of parts and traces hover above a layout.
Flux is a better way to build PCBs
Go 10x faster from idea to PCB by reducing busy work, never starting from scratch, and keeping your team in sync. All from the browser.
Screenshot of the Flux app showing a PCB in 3D mode with collaborative cursors, a comment thread pinned on the canvas, and live pricing and availability for a part on the board.
Flux is a better way to build PCBs
Go 10x faster from idea to PCB by reducing busy work, never starting from scratch, and keeping your team in sync. All from the browser.
Screenshot of the Flux app showing a PCB in 3D mode with collaborative cursors, a comment thread pinned on the canvas, and live pricing and availability for a part on the board.
Flux is a better way to build PCBs
Go 10x faster from idea to PCB by reducing busy work, never starting from scratch, and keeping your team in sync. All from the browser.
Screenshot of the Flux app showing a PCB in 3D mode with collaborative cursors, a comment thread pinned on the canvas, and live pricing and availability for a part on the board.
Flux for Enterprise
Learn how Fortune 500s are revolutionizing hardware design at scale with AI.
Flux for Enterprise
Join leading Fortune 500s and over 300k hardware engineers revolutionizing the way they build PCBs with AI
Flux for Enterprise
Join leading Fortune 500s and over 300k hardware engineers revolutionizing the way they build PCBs with AI