Last year we shared 20+ Amazing Copilot Prompts and some Tips for writing copilot prompts, which you’ve used to get help brainstorming, iterate faster, learn how to use Flux, comb through huge datasheets, and research parts.

A lot has happened since then. Thanks to your feedback, we’ve been able to improve Copilot and add even more capabilities. Now you can use Copilot for brainstorming, selecting components, performing calculations, researching and selecting parts, managing BoM, and even validating designs.

We realize that writing a good prompt can be tricky, so we’ve refreshed our list of popular prompts so you can copy and paste, or modify for your own use!

What is a Copilot prompt?

First, let’s define what a prompt is. Copilot prompts are natural language inputs given to a custom-trained large language model (LLM) specifically designed to understand hardware, electronics circuit, PCB design and layout.

For example, if the prompt is "Calculate the load capacitors for Y1", the model will generate an answer in a human-like manner based on the prompt. Remember, Copilot has the context on what you’re working on. Copilot can see your:

  1. Bill of Materials (BOM)
  2. Netlist (Schematic connections)
  3. Datasheets of parts used in the project
  4. Project title and description
  5. Any properties added to the project as requirements like power limitations or RoHS compliance

Because Copilot lives inside the PCB design tool, it provides direct feedback, advice, and analysis, and with your approval - it can take action, through a simple chat interface. With just a press of a button, Copilot can connect components together.

Most popular Copilot use cases and prompts

Spread the word and share your favorite prompts on our Slack Community.

If this sounds interesting to you and you'd like to request a demo or learn more, please contact sales.

Contact Sales

Initial Planning and Brainstorming

Focuses on early project development to establish a solid project foundation.

Thumbnail of the electronic project
Copy PromptSee it in Action
Generate high level block diagram

@copilot, use mermaid-formatted block diagrams to generate 2 well-detailed architecture design of this project for comparison. Make sure to use the technical and functional requirements information.

Thumbnail of the electronic project
Copy PromptSee it in Action
Write a product requirement document with AI

@copilot, I’m designing a custom voice-controlled speaker and I initially want it to have buttons, Bluetooth, Wi-Fi, and rechargeable battery. Help me brainstorm and develop a comprehensive product requirements document. Ask me one question at a time, waiting for my response before moving to the next question.

Thumbnail of the electronic project
Copy PromptSee it in Action
Architecture design review

@copilot, validate the the suggested architecture in the block diagram matches the product requirements set for this project. Point out any missing blocks that would be needed to satisfy the requirements.

Design Circuit Blocks

Brainstorm and optimize modular circuit blocks for faster hardware development.

Thumbnail of the electronic project
Copy PromptSee it in Action
Power tree design

@copilot, based on my requirements, help me figure out the best power architecture for this project. What should the power tree look like?

Select Components

Involves choosing appropriate parts for implementation, recommending main and alternative components that meet design requirements.

Thumbnail of the electronic project
Copy PromptSee it in Action
Main part recommendation

@copilot, here's the block diagram of this design. In a table format, recommend at least 3 IC for each block highlighting the electrical characteristics of the IC and why you recommended it.

Thumbnail of the electronic project
Copy PromptSee it in Action
Minimum set of components to implement the typical circuit

@copilot, list all components specified in the datasheet of U1 for building the typical application circuit. Present the information in a detailed table format with equations needed to size the components.

Thumbnail of the electronic project
Copy PromptSee it in Action
Alternative parts recommendation

@copilot, outline the electrical characteristics of U4 as detailed in the datasheet. Then, suggest at least four drop-in replacement parts, presented in a table format with the columns

  • Replacement Part Number
  • Manufacturer
  • Key Specifications
  • Pin Compatibility
  • Performance Comparison
  • Notes/Comments
Thumbnail of the electronic project
Copy PromptSee it in Action
General parts selection

@copilot, query all components in the schematic that do not have an assigned manufacturer part number (MPN). Compile these components into a table format with the following details: Designator, Component Function, Electrical Properties, and Recommended MPN (Provide a list of recommended part numbers based on the component's properties, focusing on the most popular and widely available parts).

Improve Supply Chain

Focuses on optimizing component selection and management, including consolidating similar passive components and addressing part obsolescence to streamline the bill of materials and reduce costs.

Thumbnail of the electronic project
Copy PromptSee it in Action
Passive component consolidation

@copilot, perform a BoM consolidation review to identify passive components (resistors, capacitors, and inductors) that have similar but different values (within ±50%) and the same package code. The goal is to simplify the BoM and reduce costs by replacing these components with a single value where possible, without affecting the circuit's functionality.

For each group of similar components, compare their electrical and mechanical characteristics, then identify a single value that can replace the others. Provide a detailed comparison table for each group, listing the designators, component values, package codes, and the proposed consolidated value, along with key specifications and any additional notes. Document the final proposed consolidated BoM in a table format.

Thumbnail of the electronic project
Copy PromptSee it in Action
Part obsolescence management

@copilot, identify all components in the schematic that are either obsolete or not recommended for new designs (NRND). Compile these components into a table with the following details: Designator, Description/Function, Obsolete/NRND Status, Recommended Alternative Parts (Suggest at least 2 alternative components and their MPN that are current, widely available, and suitable replacements, based on the original component's specifications).

Calculate Component Values

Involves precise calculations for sizing various components often using Python for accuracy and presenting results in detailed tables.

Thumbnail of the electronic project
Copy PromptSee it in Action
Size passive components of voltage regulator

@copilot, from the datasheet of U1 obtain equations used to

  • set the output voltage to 3.3V
  • size C8, R3 and R7 (Reference the typical application circuit)
  • Size inductor

Calculate these values using python and present the results in a clear and detailed table.

Thumbnail of the electronic project
Copy PromptSee it in Action
Size oscillators and load capacitors

@copilot, use Python to calculate the load capacitors for Y1 using the information from its datasheet.

Thumbnail of the electronic project
Copy PromptSee it in Action
Size limiting current resistors

@copilot, use the datasheets of LED D5 and D2 to obtain electrical characteristics needed to calculate the appropriate current-limiting resistor value. Then use python to calculate the value and present it in a well detailed table forma.

Research Components

Involves detailed examination of integrated components to ensure proper component selection and usage in the design.

Thumbnail of the electronic project
Copy PromptSee it in Action
List IC Pin names and functions

@copilot, from the datasheet of U2 List the pin names, functions, and additional attributes for the IC. Include the following details for each pin in a table format: Pin Name, Function, Pin Type (e.g., power, ground, signal), Pin Direction (e.g., input, output, bidirectional, passive), Default State (e.g., high, low, floating), Voltage Level (if applicable), Additional Notes (e.g., pull-up/pull-down resistor, special considerations).

Thumbnail of the electronic project
Copy PromptSee it in Action
Absolute maximum rating considerations

@copilot What are the absolute maximum ratings for U5? Identify any critical components that must be carefully selected to stay within these limits and present the results in a well detailed table format.

Data Visualization and Analysis

Utilizes Python to create visual representations of design data to assist in analysis and decision-making.

Thumbnail of the electronic project
Copy PromptSee it in Action
Visualize with charts

@copilot, use python to plot a bar graph showing the most expensive components in this design.

Design Reviews

Provides thorough checks of specific circuit elements to verify correct calculations and implementation in the schematic and layout.

Thumbnail of the electronic project
Copy PromptSee it in Action
Review decoupling capacitor presence

@copilot, list all ICs and the decoupling capacitors attached to each. Ensure to include all ICs present in the design, including digital ICs, power converters, LDOs, etc. For every IC, clearly state:

  • What power net the decoupling capacitors are attached to. What is the stated voltage of that net.
  • The voltage rating and value of the attached decoupling capacitors.
  • Signal with the expression “[WARNING]” if any of the following conditions are met: no decoupling capacitors are attached; the voltage of the power net is higher than the voltage rating of the capacitor; No voltage range was stated for the capacitor. Give a separate “[WARNING]” for each condition. Signal with the expression “[OK]” if none of those conditions are met
  • Express the result in a markdown-formatted table
Thumbnail of the electronic project
Copy PromptSee it in Action
Review my current limiting resistors

@copilot, review the design to ensure all current-limiting resistors for LEDs are correctly calculated for a current range of 1mA to 10mA. Follow these steps:

  1. Identify all LEDs and their resistors.
  2. Reference the datasheets for forward voltage (Vf) and current (If). Make no assumptions in this step
  3. Calculate the correct resistor values.
  4. Verify that schematic values match calculations.
  5. Document findings in a table with LED designator, Vf, If, calculated resistor value, schematic value, status, and notes.
Thumbnail of the electronic project
Copy PromptSee it in Action
Calculates and analyzes the efficiency of PMIC in varying load conditions

@copilot, determine the efficiency of U4 at various load conditions, considering that the input is a battery with a voltage range from 4.2V (fully charged) to 3.3V (low battery level). Identify which components in the circuit affect this efficiency and present that in a detailed table. Finally, use python to plot a graph showing the efficiency of U1 across the range of load conditions and input voltages.

Testing and Reliability Analysis

Generates test plans and collaborative workflows, ensuring your hardware is manufactured error-free.

Thumbnail of the electronic project
Copy PromptSee it in Action
Test Plan

@copilot, create a detailed step-by-step plan table for this project to verify its functionality.

Thumbnail of the electronic project
Copy PromptSee it in Action
FMEA Report

@copilot, develop an FMEA (Failure Mode and Effects Analysis) report in a table format that analyzes the systems schematic, each unique component specification, and operational parameters. It should identify critical failure modes, assess their impact, and recommend mitigation actions based on severity, occurrence probability, and detectability. Include columns such as: process step, potential failure mode, potential failure effect, S, O, D, RPN, Action Recommended, and any other you see fit.

Profile avatar of the blog author

Lance Cassidy

Lance is Co-Founder & CDO of Flux, a hardware design platform that’s revolutionizing how teams create and iterate on circuits. Find him on Flux @lwcassid

Go 10x faster from idea to PCB
Flux is an all-in-one EDA. Use re-usable blocks, scripting, and a library you don’t have to manage to dramatically reduce the time it takes to go from idea to prototype.
Illustration of sub-layout. Several groups of parts and traces hover above a layout.
Illustration of sub-layout. Several groups of parts and traces hover above a layout.
Flux is a better way to build PCBs
Go 10x faster from idea to PCB by reducing busy work, never starting from scratch, and keeping your team in sync. All from the browser.
Screenshot of the Flux app showing a PCB in 3D mode with collaborative cursors, a comment thread pinned on the canvas, and live pricing and availability for a part on the board.
Flux is a better way to build PCBs
Go 10x faster from idea to PCB by reducing busy work, never starting from scratch, and keeping your team in sync. All from the browser.
Screenshot of the Flux app showing a PCB in 3D mode with collaborative cursors, a comment thread pinned on the canvas, and live pricing and availability for a part on the board.
Flux is a better way to build PCBs
Go 10x faster from idea to PCB by reducing busy work, never starting from scratch, and keeping your team in sync. All from the browser.
Screenshot of the Flux app showing a PCB in 3D mode with collaborative cursors, a comment thread pinned on the canvas, and live pricing and availability for a part on the board.
Flux for Enterprise
Learn how Fortune 500s are revolutionizing hardware design at scale with AI.
Flux for Enterprise
Join leading Fortune 500s and over 300k hardware engineers revolutionizing the way they build PCBs with AI
Flux for Enterprise
Join leading Fortune 500s and over 300k hardware engineers revolutionizing the way they build PCBs with AI